

SEWAGE PLANT ODOR MONITORING AND PREDICTION SYSTEM

Presented by: Team Blue Sky

OUR TEAM

An Si-Eun

Project Researcher

Kasimov Azizjon

Project Manager

Min Woo Cho Project Researcher

Sukhrob Ikromov

Data Scientist

BACKGROUND

The odor emitted from a sewage treatment plant is an important environmental problem. Bad odors can lead to public complaints, health issues, and reduce the quality of life in nearby areas. An estimation of odor emission rate is difficult to detect and quantify. The evaluation of odor emission involves huge manpower, time, and cost.

PROJECT DETAILS

Sensor technology

Sensor technology is used to detect concentrations of NH3 (ammonia), H2S (hydrogen sulfide), total volatile organic compounds (TVOCs) and other odorcausing compounds.

Weather synchronization

Predict odor distribution patterns using weather variables such as temperature, humidity, wind direction, and speed.

Predictive Analytics

Use machine learning algorithms to analyze time series data to increase the accuracy of odor intensity prediction.

ORIGINAL SCOPE

DESIGN GOAL 1

Implement a model that enables the prediction of odor levels from some features of a given dataset

DESIGN GOAL 2

Visualize the predictions of models and report their performance.

DEVELOPMENT PROCESS

Data Preprocessing

• • • •

Normalize data, feature engineer, identify outliers and identify seasonality.

Algorithms

Implementing various prediction models.

Comparison

Comparing and choosing the best performing prediction algorithm

MODEL OPERATION

[O]E

Prediction model

Visualization module

MODELS TESTED

Cone-shaped neural network

Linear regression

Implementation problem

Implementation problem No. 2

data[data["ou"] == 1.0].describe()

⇒		ou	NH3	H2S	TVOCs	temperature	humidity
	count	8854.0	8854.000000	8854.000000	8854.000000	8854.000000	8854.000000
	mean	1.0	0.846675	0.272148	0.085093	-2.434448	6.210594
	std	0.0	0.071850	0.031618	0.009110	5.593167	1.865886
	min	1.0	0.638000	0.156000	0.018000	-16.200000	0.000000
	25%	1.0	0.796000	0.250000	0.085000	-6.600000	4.900000
	50%	1.0	0.838000	0.270000	0.086000	-2.100000	6.100000
	75%	1.0	0.904000	0.296000	0.087000	1.900000	7.700000
	max	1.0	1.014000	0.367000	0.110000	12.700000	10.000000

Data correlation

-0.048	0.91	0.049	-0.029	-0.0077			- 1.00
0.9	-0.05	-0.9	0.42	-0.23			- 0.75
1	0.0045	-0.9	0.29	-0.22			- 0.50
0.0045	1	-0.073	-0.32	0.07			- 0.25
-0.9	-0.073	1	-0.15	0.11			- 0.00
0.29	-0.32	-0.15	1	-0.35			0.25
-0.22	0.07	0.11	-0.35	1			0.50
dataset 7						0.75	
H2S TVOCs temperature humidity windspeed atm							

Implementation status

Polynomial regression. R2 value: 0.8 MSE: 0.15

Development Result

Extra trees regressor model. Prediction accuracy: 80%. Error value: 0.07

FACED CHALLENGES

STRUGGLING TO UNDERSTAND THE DATA

The provided data was hard to interpret and understand given features that were not strongly correlated with the target variable

NO KNOWLEDGE ABOUT EQUIPMENT

Did not know the location and models of the sensors

LACK OF DATA

The labelled data had a period of less than a year, that created limitations to identify the seasonality

approximation of the space

COMPLETED TASKS

1. EXPLORED THE DATASET

We implemented statistical methods to find data distribution and feature correlation

2. STUDIED SIMILAR PROJECTS

We looked at studies done on the same problem worldwide. After studying them, we gained insights and proceeded our development.

4. IMPLEMENTED **PREDICTION ALGORITHMS**

Based on the research papers and recomendations from mentor, we trained certain selection of algorithms

After training the models, we compared their performance and reported to our mentor.

3. PREPROCESING

Based on the papers, recommendations from mentor and general conventions we preprocessed the dataset

COLUMN TWO IS NOT THE OWNER.

5. COMPARED PERFORMANCES

Thank For Your Attention

